

# DfCell Mycoplasma RT-qPCR Detection Kit DfCell 支原体快速检测试剂盒(RT-qPCR)

# 产品简介

DfCell Mycoplasma RT-qPCR Detection Kit 是基于 NAT(nucleic acid amplification techniques)的一种快速定性检测生产原料、细胞库、病毒种子、病毒或细胞收获液、治疗用细胞中潜在支原体污染的产品。该试剂盒基于定量 PCR 技术,采用多重 PCR 的方法,使用 2 种荧光探针,FAM 和 VIC,分别检测目标序列和内参。可覆盖 100 多种支原体 DNA 序列;并且严格按照 EP 2.6.7 进行专属性、检测限、耐用性验证,检测限满足 $\leq 10$  CFU/mL 的要求,具备灵敏度高、特异性好、安全性好等特点。

## 产品信息

| 货号 | C230106E / C230106S |
|----|---------------------|
| 规格 | 25 T /100 T         |

# 组分信息

| 组分编号         | 组分名称                   | C230106E | C230106S |
|--------------|------------------------|----------|----------|
| C230106-A    | 4×qPCR Reaction Buffer | 250 μL   | 1 mL     |
| C230106-B    | Primer & Probe Mix     | 25 μL    | 100 μL   |
| C230106-C    | Internal Control (IC)  | 25 μL    | 100 μL   |
| C230106-D*   | Positive Control (PC)  | 500 μL   | 2 mL     |
| C230106-E**  | DNA Dilution Buffer    | 1 mL     | 4×1 mL   |
| C230106-F*** | ddH <sub>2</sub> O     | 500 μL   | 2×1 mL   |

<sup>\*</sup>阳性对照(PC):浓度为 1,000 copies/µL;

# 储存条件

25~-15°C保存,有效期1年。注意 C230106-B 需要避光保存。

# 注意事项

- 1. 使用本试剂前请仔细阅读本说明书,实验应规范操作,包括样本处理、反应体系的配制及加样。
- 2. 加样和配液步骤都尽量在冰上操作。
- 3. 每个组分在使用前都应震荡混匀,低速离心。
- 4. 为了您的安全和健康,请穿实验服并戴一次性手套操作。
- 5. 本产品仅用于科研。

<sup>\*\*</sup>DNA 稀释液:用于样本和IC 稀释、以及NTC和NC的模板;

<sup>\*\*\*</sup>超纯水:用于制备 qPCR Mix 体系。



# 使用说明

#### 1. 实验前准备

- 1) 提前准备实验所需试剂耗材;
- 2) 确认仪器适配性:

本试剂盒适配的 qPCR 机型包含但不限于以下仪器:

A:Bio-Rad: CFX96

B:Thermo Scientific:7500 Real-Time PCR System; QuantStudio™5;

#### 2. 实验方法

#### 1) 待测样本 DNA 提取

建议使用磁珠法核酸提取试剂。本试剂盒包含内部对照(IC)。如果在 DNA 提取前将 IC 加入样品中,可以验证整个过程(包括 DNA 提取和 qPCR 反应)。如果将 IC 直接添加到 qPCR Mix 中,IC 将仅作为 qPCR 对照。

### 2) qPCR 反应体系的准备

a. 根据所要检测样本的数量,包括阳性对照(PC),无模板对照(NTC),抽提阴性对照(NC)和待测样本(TS),根据实验设计,计算所需反应孔数,一般每个样本做 2 个重复孔。

阳性对照(PC): Positive control solution; 无模板对照(NTC): No template control;

抽提阴性对照(NC): Negative control solution;

待测样本(TS): Test sample。

Total

PC 和 NTC 为无需进行提取前处理的样本; NC 和 TS 为需要进行提取前处理的样本。

反应孔数  $(M1) = (1 \times NC + N \times TS) \times 2$ 

反应孔数  $(M2) = (1 \times PC + 1 \times NTC) \times 2$ 

反应孔数 (M3) = (1×PC+1×NTC+N×TS) ×2

b. 根据实验设计以及下面对应表格中的反应体系,提前将所需试剂放置冰上融化。

20 μL

c. 根据反应孔数计算所需要的 qPCR Mix 的量。

【注意】如果使用该产品用于产品放行等 GMP 活动中,则推荐按照表 1 和表 2 配置体系;如果仅用于研发实验中,用户自行评估实验情况后认为无需提取前将 IC 加入 TS 中或无需做 NC 对照,也可按照表 3 配置体系。并非 M1,M2,M3 都需要配制。

| 组分                     | 体积(1×40 μL 反应体系) | 体积(M1×40 μL)        |
|------------------------|------------------|---------------------|
| 4×qPCR Reaction Buffer | 10 μL            | (M1+2) ×10 μL       |
| Primer & Probe Mix     | 1 μL             | (M1+2) ×1 μL        |
| ROX                    | Χ μL /0 μL**     | (M1+2) ×X μL/0 μL   |
| ddH <sub>2</sub> O     | Up to 20 μL      | Up to (M1+2) ×20 μL |
|                        |                  |                     |

表 1 反应孔数(M1)对应的 qPCR Mix 体系\*

 $(M1+2) \times 20 \mu L$ 



\*表 1 中的配置体系是基于 NC 和 TS 都是在提取前加入 IC 的前提下,则无需在配置 qPCR Mix 时再加入 IC。 提取前加入 IC 的方法: 首先将试剂盒 IC 用 DNA 稀释液稀释 20 倍, 每 100 μL 检测样本加入 1 μL 稀释后 的 IC 后进行提取。

\*\*本试剂盒不含 ROX 参比染料,若您目前使用的 Real Time PCR 扩增仪需要添加 ROX 参比染料,请具体 参考其说明书进行 ROX 添加。若不需要添加 ROX 参比染料,则添加体积为 0 μL。

表 2 反应孔数 (M2) 对应的 aPCR Mix 体系

| 组分 | 体积(1×40 μL 反应体系) | 体积(M2× |
|----|------------------|--------|
|    |                  |        |

| 组分                     | 体积(1×40 μL 反应体系) | 体积(M2×40 μL)        |
|------------------------|------------------|---------------------|
| 4×qPCR Reaction Buffer | 10 μL            | (M2+2) ×10 μL       |
| Primer & Probe Mix     | 1 μL             | (M2+2) ×1 μL        |
| Internal Control (IC)  | 1 μL*            | (M2+2) ×1 μL/0 μL   |
| ROX                    | Χ μL/0 μL**      | (M2+2) ×X μL/0 μL   |
| ddH <sub>2</sub> O     | Up to 20 μL      | Up to (M2+2) ×20 μL |
| Total                  | 20 μL            | (M2+2) ×20 μL       |

<sup>\*</sup>表 2 中的配置体系是基于 PC 和 NTC 都是未在提取前加入 IC 的前提下,则需要在配置 qPCR Mix 时加入 IC。提取后加入 IC 的方法: 将 IC 用 DNA 稀释液稀释 100 倍后每个反应体系中加 1 μL。

<sup>\*\*</sup>本试剂盒不含 ROX 参比染料,若您目前使用的 Real Time PCR 扩增仪需要添加 ROX 参比染料,请具 体参考其说明书进行 ROX 添加。若不需要添加 ROX 参比染料,则添加体积为 0 μL。

| 我 S 及画 Low (Mo) A J Map B q C C M M A F M M M M M M M M M M M M M M M M |                  |                     |
|-------------------------------------------------------------------------|------------------|---------------------|
| 组分                                                                      | 体积(1×40 μL 反应体系) | 体积(M3×40 μL)        |
| 4×qPCR Reaction Buffer                                                  | 10 μL            | (M3+2) ×10 μL       |
| Primer & Probe Mix                                                      | 1 μL             | (M3+2) ×1 μL        |
| Internal Control (IC)                                                   | 1 μL*            | (M3+2) ×1 μL/0 μL   |
| ROX                                                                     | Χ μL /0 μL**     | (M3+2) ×X μL/0 μL   |
| ddH₂O                                                                   | Up to 20 μL      | Up to (M3+2) ×20 μL |
| Total                                                                   | 20 μL            | (M3+2) ×20 μL       |

表 3 反应引数 (M3) 对应的 aPCR Mix 体系

## 3) 加样

- a. 充分震荡混匀 gPCR Mix, 低速离心,将管盖残留液体收集至管底。
- b. 向每孔反应管中分装 20 μL 对应样本的 qPCR Mix。

【注意】各样品管中分装的 qPCR Mix 需要与上一步"qPCR 反应体系的准备"中配置的 qPCR Mix 保持一 致,与样品——对应,避免加错。

c. 向已分装过 gPCR Mix 的反应管中加入样品,参考表 4。

<sup>\*</sup>表 3 中的配置体系是基于提取前样本中不加入 IC 的前提下,则需要在配置 qPCR Mix 时加入 IC。提取后 加入 IC 的方法:将 IC 用 DNA 稀释液稀释 100 倍后每个反应体系中加 1 μL。

<sup>\*\*</sup>本试剂盒不含 ROX 参比染料,若您目前使用的 Real Time PCR 扩增仪需要添加 ROX 参比染料,请具体 参考其说明书进行 ROX 添加。若不需要添加 ROX 参比染料,则添加体积为 0 μL。



#### 表 4 加样示例

| 样本  | 向每管或孔中加入…                    |
|-----|------------------------------|
| TS  | 20 μL qPCR Mix+20 μL 待测样本纯化液 |
| NTC | 20 μL qPCR Mix+20 μL DNA 稀释液 |
| NC* | 20 μL qPCR Mix+20 μL NC 纯化液* |
| PC  | 20 μL qPCR Mix +20 μL 阳性对照   |

<sup>\*</sup>每管或孔中最终反应体积为 40 μL。

\*\*\*\*完成加样后,先短时低速离心反应管或反应板,再充分震荡混匀然后短时低速离心,将管盖和管壁的 残留液体收集至管或板底。操作时尽量避免气泡产生。这一步非常重要,不混匀或者混匀不彻底会影响基 线平稳。

## 4) qPCR 程序参数设置

#### a. 程序文件设置:

以 Thermo Scientific:7500 Real-Time PCR System 仪器和 Real-Time PCR Software v2.4 为例: 仪器类型: 7500 (96 Wells)

实验类型选择: Quantitation-Standard Curve; 检测目标序列的试剂: Tagman® Reagents

程序速度: Standard (~2 hours to complete a run)

### b. 检测通道设置:

在"Plate Setup"的"Define Targets and Samples"中,创建 Target 1 通道(FAM),选择报告荧光基团为 FAM,猝灭荧光基团为 MGB 或 none;创建 Target 2 通道(VIC),选择报告荧光基团为 VIC,猝灭荧光基团为 none。在"Plate Setup"的"Assign Targets and Samples"中,如果没有额外加入 ROX 染料,则选择"none";如果额外加入了 ROX,则选择"ROX"。

### c. 标准扩增程序设置:

表 5 标准扩增程序

| 编号 | 反应阶段          | 温度   | 时间     | 循环数 |
|----|---------------|------|--------|-----|
| 1  |               | 95°C | 5 min  | 1   |
| 2  | 变性            | 95°C | 15 sec |     |
| 3  | 退火/延伸(荧光信号收集) | 62°C | 30 sec | 45  |

#### d. 基线和阈值设置:

基线调整原则:基线通常按照自动设置的基线即可。如需手动调整,基线起始循环数选择在指数增长期之前,其中起点设置需要避开起始荧光采集的波动区,终点选择在最早出现指数扩增样本的 Ct 值的前 1-2 个循环。

阈值设置原则:通常采用自动阈值。如需手动调整,阈值线要高于阴性对照或者基线噪音,通常设置在样本重复性较好的指数增长期的后期,不同通道需要设置相对独立的、合适的阈值线。

# 5) 结果分析

<sup>\*\*</sup>NC 推荐使用 DNA 稀释液作为样本进行前处理。

<sup>\*\*\*</sup>注意盖上反应管盖子或者贴上光学膜,为避免影响荧光信号读取,请注意不要在管盖或者膜上做标记, 或者用刮板反复摩擦。



## a. PC、NTC 和 NC 结果判断:

若反应体系中加入了 IC,则各质控样品需要满足表 6 中条件:

#### 表 6 PC、NTC 和 NC 结果判断

| 质控样本 | FAM 信号           | VIC 信号           |
|------|------------------|------------------|
| PC   | Ct <40,且有明显的扩增曲线 | Ct <40,且有明显的扩增曲线 |
| NTC  | Ct ≥40,或无明显的起峰   | Ct <40,且有明显的扩增曲线 |
| NC   | Ct ≥40,或无明显的起峰   | Ct <40,且有明显的扩增曲线 |

若反应体系中未加 IC: 各质控样品需要满足表 6 中 FAM 信号一列的条件,无需分析 VIC 通道。

### b. 待测样本 TS 检测结果判断:

前提条件:判断样本 TS 检测结果前,需要先判断各质控品即 PC、NTC 和 NC 是否通过表 6 中的标准。 若通过则可以进行下一步;若未通过,则样本 TS 的结果可能不可靠,需要调查原因。

若反应体系中加入了 IC,则根据样本 FAM 信号和 VIC 信号的结果找到表 7 中对应的结果判断:

## 表 7 待测样本结果判断(加 IC 时)

| FAM 信号                     | VIC 信号          | 结果判断        |
|----------------------------|-----------------|-------------|
|                            | Ct<40,且有明显的扩增曲线 | 阳性          |
| Ct<40,且有明显的扩增曲线            | Ct≥40,或无明显的起峰   | 有抑制,需要重复实验* |
| 012 40 -27 111 17 45 +7 45 | Ct<40,且有明显的扩增曲线 | 阴性          |
| Ct≥40,或无明显的起峰              | Ct≥40,或无明显的起峰   | 有抑制,需要重复实验* |

\*VIC 信号如果有抑制,需重测或对样本进行合适处理消除抑制因子

若反应体系中未加 IC: 无需分析 VIC 通道, 只需要根据表 8 中样本 FAM 信号的结果找到对应的结果判断:

## 表 8 待测样本结果判断 (未加 IC 时)

| FAM 信号          | 结果判断 |
|-----------------|------|
| Ct<40,且有明显的扩增曲线 | 阳性   |
| Ct≥40,或无明显的起峰   | 阴性   |